
正態(tài)分布的期望值μ決定了其位置,其標(biāo)準(zhǔn)差σ決定了分布的幅度。因其曲線呈鐘形,因此人們又經(jīng)常稱之為鐘形曲線。我們通常所說的標(biāo)準(zhǔn)正態(tài)分布是μ = 0,σ = 1的正態(tài)分布(見右圖中綠色曲線)。
正態(tài)分布的概率密度函數(shù)均值為μ?方差為σ2?(或標(biāo)準(zhǔn)差σ)是高斯函數(shù)的一個(gè)實(shí)例:
累積分布函數(shù)
累積分布函數(shù)是指隨機(jī)變量X小于或等于x的概率,用密度函數(shù)表示為
matlab實(shí)現(xiàn)代碼
function [ output_args ] = Normpropogation( input_args )
%NORM PROPOGATION Summary of this function goes here
% Detailed explanation goes here
x=-7:0.1:7;
y1=normpdf(x,0,1);
y2=normpdf(x,0,0.45);
y3=normpdf(x,0,2.23);
y4=normpdf(x,-2,0.71);
%線型,顏色,點(diǎn)型,線寬
figure;
plot(x,y2,'-r','LineWidth',1);
hold on;
plot(x,y1,'-g','LineWidth',1);
hold on;
plot(x,y3,'-b','LineWidth',1);
hold on;
plot(x,y4,'-m','LineWidth',1);
hold on;
% legend('','','','',1);
legend('μ=0,σ^2=0.2','μ=0,σ^2=1','μ=0,σ^2=5','μ=-2,σ^2=0.5',2);
legend boxoff;
figure;
z1=normcdf(x,0,0.45);
z2=normcdf(x,0,1);
z3=normcdf(x,0,2.23);
z4=normcdf(x,-2,0.71);
plot(x,z1,'-r',x,z2,'-g',x,z3,'-b',x,z4,'-m');
h=legend('μ=0,σ^2=0.2','μ=0,σ^2=1','μ=0,σ^2=5','μ=-2,σ^2=0.5',2);
legend boxoff;
end
|